АКАДЕМИЯ НАУК СССР ОРДЕНА ЛЕНИНА ИНСТИТУТ ОБЩЕЙ И НЕОРГАНИЧЕСКОЙ ХИМИИ им. Н.С.КУРНАКОВА

На правах рукописи

ГРИЦЕНКО ОЛЕГ ВЛАДИМИРОВИЧ

YAK 541.128

КВАНТОВОХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ ВЗАИМОДЕЙСТВИЯ МОЛЕКУЛЯРНОГО ВОДОРОДА С КОМПЛЕКСАМИ ПАЛЛАДИЯ.

Специальность 02.00.04. - физическая химия

ABTOPE DE PAT.

диссертации на соискание ученой степени кандидата химических наук Работа виполнена в Институте органической химии
им. Н.Д.Зелинского АН СССР
Научные руководители:
член-корреспондент АН СССР, профессор В.Б.Казанский,
кандидат химических наук, старший научный сотрудник А.А.Багатурьянц
Официальные оппоненты:
доктор химических наук, профессор О.П.Чаркин,
кандидат химических наук, старший научный сотрудник Ю.А.Борисов
Ведущая организация:

Научно-исследовательский физико-химический институт им. Л.Я.Карпова.

Защита диссертации состоится "" 1982г.	
в 40 часов на заседании Специализированного Совета по	
присуждению ученой степени кандидата наук К 002.37.01	
в Институте общей и неорганической химии им. Н.С.Курнакова	
АН СССР по адресу: г.Москва, 117071, Ленинский проспект, 3	I,
С диссертацией можно ознакомиться в библиотеке химическ	Οİ
литературы АН СССР.	
Автореферат разослан " " 1982г.	

Учёный секретарь Специализированного Совета, канд. хим. наук Дишишике /И.Ф.Аленчикова/

Актуальность темы. Каталитическое гидрирование принадлежит к числу наиболее важных, широко используемых на практике процессов. Особый интерес в научном и практическом отношении представляют катализаторы селективного гидрирования. Недавно в ИОНХ АН СССР на основе комплексов ацетата палладия с трифенилфосфином разработани новие весьма перспективные в прикладном аспекте кластерные катализаторы селективного гидрирования диенов и ацетиленов в моноолефини, проявляющие высокую активность и селективность в мягких условиях - при 200С и І атм. Несмотря на имеющийся довольно значительный материал относительно путей формирования каталитически активных кластеров, ряд важных деталей механизма этого процесса представлялся неясным или недостаточно обоснованным: отсутствовали сведения о природе влияния ацидолигандов на реакционную способность фосфиновых комплексов Ра(П), не было данных об электронном строении не только промежуточно образующихся гидридных комплексов, но и исходных соединений, отсутствовали сведения о характере взаимодействия молекулярного водорода с моноядерными комплексами и с кластерами палладия.

Квантовохимическое исследование модельных систем позволяет подойти к изучению этого сложного процесса, далеко не все стадии которого и соответствующие им промежуточные соединения могут быть выделены и изучены экспериментальными физико-химическими методами. Координация молекулярного водорода простейшим двуядерным комплексом палладия может служить моделью для изучения активации водорода кластерами, а также активации более сложных насыщенных молекул. Все это делает актуальным исследование квантовохимическими методами электронного строения модельных палладиевых комплексов, а также

промежуточных соединений, которые могут образоваться при их взаимодействии с H_2 .

Работа проводилась в соответствии с тематическим планом мох АН СССР на 1977—1982 г.г., координационным планом научно-исследовательских работ АН СССР на 1976—1980 г.г. по направлению "Катализ", Программой работ по проблеме ОІ.ОІІ /СЭВ/, утвержденной Постановлением ГКНТ СМ СССР /№ 435 от 10.12.1976 г./ и Президиумом АН СССР /РАН № 10.103—176 от 28.01.1977 г./, Программой работ, утвержденной РАН № 10.103—1535 от 20.09.1979 г., Постановлением ГКНТ СМ СССР /№ 407 от 9.08.1979 г./ "О мероприятиях по обеспечению Постановления СМ СССР о дальнейшем повышении технического уровня химической, нефтеперерабатывающей и нефтехимической промышленности за счет применения более эффективных катализаторов".

<u>Цель работи</u>. Основной целью настоящей диссертационной работи являлось систематическое исследование электронного строения комплексов палладия и их реакционной способности по отношению к H_2 в зависимости от -типа и числа координированных лигандов; -числа атомов палладия /металлического "ядра" комплекса/; -степени окисления и природы центрального атома металла /проведены сравнительные расчеты ряда комплексов палладия и платины/.

Одновременно с этим ставилась задача анализа и поиска путей усовершенствования ряда приближенных квантовохимичес-ких методов, используемых для расчета комплексов переходных металлов. Подобный анализ необходим для детального понимания области применимости результатов, полученных в настоя-

щей диссертационной работе с помощью модифицированной схемы метода полного пренебрежения дифференциальным перекрыванием /ПППП/.

Научная новизна. Впервые предложена модифицированная схема параметризации метода ШШП для переходных элементов, позволяющая воспроизводить энергии атомных валентных состояний и атомные энергии промотирования.

Впервые проведено систематическое квантовохимическое исследование электронного строения и реакционной способности комплексов $Pd(\mathbb{I})$ и Pd(O) по отношению к координации и диссоциации H_{Q} .

Впервые проведено сравнительное исследование взаимодействия моно- и биядерных комплексов Pd(O) с молекулярным водородом. Показано, что биядерные комплексы обладают большей реакционной способностью по отношению к H₂.

Впервые исследовано взаимодействие координированного молекулярного водорода с различными лигандами в координационной сфере палладия /II/. Выявлены причины облегчения гетеролитической диссоциации молекулярного водорода в комплексах с кислородсодержащими лигандами по сравнению с комплексами с клоридными лигандами.

Впервые проведено сравнительное исследование диссоциативного присоединения H_2 к фосфиновым комплексам Pd(O) и Pt(O).

Научная и практическая ценность. Получение в диссертации результаты квантовохимических расчетов находят применение при теоретической интерпретации результатов экспериментальных исследований гомогенного каталитического гидрирования, полученных в ИОНХ им. Н.С.Курнакова АН СССР. Результаты исследования зависимости реакционной способности комплексов палладия от числа и типа лигандов, числа и природы атомов переходного металла могут быть полезны при подборе эффективных катализаторов. Предложенная схема параметризации приближенного метода ППДП используется в ВНИИОС /Москва/ и в ФХИ АН УССР /Одесса/ для расчетов электронного строения комплексов переходных металлов.

Апробация работи. Результати работи доложени на УІІ Всесоюзном совещании по квантовой химии /Новосибирск, 1978/, ІІІ Всесоюзном совещании "Синтез и физико-химические свойства гидридов переходных металлов" /Москва, 1978/, Конференции по теории атомов и молекул /Вильнюс, 1979/, УІІ Всесоюзной конференции "Физические и математические методы в координационной химии" /Кишинев, 1980/. Материали диссертации отражени в ІІ печатных работах.

Объем работи. Диссертация состоит из Введения, пяти глав, Виводов, списка цитированной литературы //44 ссылок/, и включает 164 стр. машинописного текста, 24 рисунков и 33 таблиц.

Содержание работы.

І-ая глава представляет собой литературный обзор квантовохимических даннах об электронном строении и реакционной способности комплексов палладия.

Проведен сравнительний анализ результатов расчетов комплексов двухвалентного палладия и комплексов нульвалентного палладия, а также кластеров палладия — систем Pdn. Обсуждены данные квантовохимических исследований реакций с участием палладиевых систем, в том числе расчетов взаимодействия молекулярного водорода с атомом палладия и биядерным кластером Pd. .

Во II-ой главе проведен анализ и сформулированы способы усовершенствования ряда приближенных ССП МО методов, используемых для расчета сложных систем. Обсуждены возможности и недостатки полуэмпирических методов, использующих приближение неполного дифференциального перекрывания /НДП/. Сформулирована расчетная схема, сочетающая последовательный сбалансированный учет электростатического взаимодействия с присближенной оценкой обменного взаимодействия в рамках НДП.

Дана общая характеристика приближенных методов, использующих локальную аппроксимацию обменно-корреляционного по-тенциала V_{ok} . Основой подобных методов является приближение свободного электронного газа /однородной электронной плотности/. Предложен новый обменный потенциал, построенный с учетом реальной неоднородности электронной плотности молекулярных систем в рамках локального приближения.

Предложена модифицированная схема параметризации метода полного пренебрежения дифференциальным перекриванием /ППДП/
для переходных элементов, которая используется в проведенном в настоящей диссертации исследовании взаимодействия Н2 с комплексами палладия. Отличительными чертами предложенной схемы являются последовательное использование эмпирических атомных параметров Олеари и введение различных параметров для оценки взаимодействия валентных иd — и внешних (n+1)5—и (n+1)р—АО переходных элементов. Это позволяет в рамках припридовлетворительно воспроизводить относительные энергии атомных валентных состояний и атомные энергии промотирования.

С целью уменьшения ошибок, связанных с применяемой полуэмпирической схемой расчета, предложен изоструктурный подход, который последовательно используется в проведенных в диссертации квантовохимических расчетах. Этот подход состоит в выделении основного фрагмента системы, структура которого сохраняется неизменной для ряда исследуемых модельных комплексов. Полученные в таком подходе расчетные характеристики рассматривались нами как индексы, описывающие закономерности изменения электронного строения и реакционной способности изоструктурных систем в зависимости от степени окисления, числа и природы атомов переходного металла, типа и числа лигандов.

В III—ей главе представлены результаты расчета электронного строения комплексов Pd(1) и Pd(0), моделирующих палладиевые системы, которые взаимодействуют с HQ в реакции селективного гидрирования, а также промежуточные гидридные и родственные системы. На начальной стадии формирования ответственных за катализ кластеров комплексы Pd(1) восстанавливаются молекулярным водородом, причем комплексы с кислородсодержащими лигандами проявляют значительно большую активность по отношению к HQ, чем аналогичные комплексы с галогенидными лигандами. В процессе восстановления образуются комплексы Рd(0) и Pd(D:

$$Ph_3P - Pd \longrightarrow Pd - PPh_3 + H_2 \longrightarrow (Ph_3P)_2Pd_2 + HOAC$$

Комплекси L_2 Pd₂, взаимодействуя с H_2 и [Rd(OAC₂]₃, превращаются в ответственные за катализ гидрирования полиядерные комплекси $E(PhP)_2Pd_5J_n$. В соответствии с этим проведен расчет комплексов Pd(II) типа транс-ХуРd(PH₃)₂ (X,Y =H,Cl,OH,OAC), транс- $X_2Pd(PH_3)_2(H_2O)$ (X = Cl,OH); комплексов Pd(O) типа $Pd(PH_3)_n$ (n = I-3), $Pd_2(PH_3)_n$ (n = 2,4), $Pd_2(PPhH_2)_2$, $Pt(PH_3)_2$.

В случае псевдоквадратных комплексов Рd(П) типа транс
ХУРd(РН₃)₂ на основе сопоставления полученных двухцентровых компонент полной энергии Ерdх и индексов Виберга Wpdx

/см. табл. I/ получен ряд статического транс-влияния лигандов ОН ≈ ОАс < СС < Н . В соответствии с этим рядом связь Рd-Н наиболее устойчива в комплексах с кислородсодержащими лигандами, что должно облегчать образование промежуточных гидридных комплексов в этом случае. Гидридный атом Н проявляет наибольшее транс-влияние, что согласуется с экспериментальными данными. Особенностью связи Рd-Н в сравнении с другими связями является ее большая ковалентность, обусловленная значительно большим перекрыванием 15-АО Н с внешними 55и 5р-АО Рd, принимающими участие в связи Рd-Н.

В случае фосфиновых комплексов Rd(O) типа $Pd(PH_3)_n$ важную роль в связывающем взаимодействии $Pd-PH_3$ играют 55- и 5p-AO Pd. Участие этих орбиталей в связи позволяет Pd(O) с заполненной d-оболочкой виступать в качестве акцептора электронов при взаимодействии с фосфиновыми лигандами. Анализ рассчитанных индексов связей для модельных структур, соответствующих различной формальной гибридизации /см. табл. 2/

Таблица I

Эффективные заряды атомов и индексы связей в комплексах гранс-хура(РН3).

Лиганды	X,Y=0H	X,y=OAc	X,y=CI	X,y=H	X=0H	X,y=CI X,Y=H X=OH X=OAc	X=0H	X=0Ac	X=CI
					y=CI	y=ci y=ci	J=H	y=H	从一H
F _P	0,65	69,0	0,5I	0,5I 0,43 0,59 0,6I	0,59	19°0	0,55	0,55 0,55	0,45
H _X	-0,95	18.0-	-0,55	-0,48 -0,95 -0,80	-0,95	0,80	-0,97	-0,78	-0,65
74	-0,95	-0,8I	-0,55	-0,48 -0,57 -0,57	-0,57	-0,57	-0,43	-0,48	6,38
Epdx, 38	-I3,47	-13,63	-II,05	- OI 6-	-13,12	-I3, 20	-9,IO -I3,I2 -I3,20 -I2,59 -I2,45	-I2,45	I0'6-
Epy, 38	-I3,47	-I3,63	-II,05	-01,6-	-II,20	-11,29	-9,10 -II,20 -II,29 -9,62 -9,55	-9,55	6,29
Wedx	19 , 0	0,55	0,68	0,70	0,62	0,57	0,70 0,62 0,57 0,56 0,48	0,48	0,54
WAY	19°0	0,55	0,68	0,70	0,67	99'0	0,76	94.0	0,80
3				-				-	

*Приведены значения двухцентровых компонент полной энергии Ердх и индексов Виберга Wрдх, атомов лиганда Х. а также эффективные заряды для непосредственно связанных с Ра

Характеристики электронного строения комплексов $Pd(PH_3)_n$, $Pd_2(PH_3)_n$, $Pt(PH_3)_2$.

Комплекс	Угол L-Рd-L,	Q*	Qp	Qd	Epdp, 3B	Epapa,3	B E SMO, 3B
PdL.		0,20	0,09	9,88	-7,40	***	2,5
PdL2	180	0,46	0,20	9,69	-7,44		2,9
PdL2	120	0,24	0,23	9,83	-7 , IO	Place in gard place	3,6
Pd L3	120	0,28	0,30	9,75	-7,05	Cred view (ring)	4,0
PtL ₂	I80	I,65	0,26	8,53	-7,54		
Pd2L2		0,14	0,11	9,90	-7,32	-0,63	0,61
Pdaly		0,30	0,26	9,73	- 7,I0	-I,II	I,I

 $^{^*}$ Q $_5$, Q $_p$, Q $_d$ — суммарные заселенности внешних $_5$ —, $_p$ — и валент—ных $_d$ —AO P $_d$ и P $_t$.

^{** 68}M0 - энергия нижней вакантной МО, локализованной на ато-

показывает, что с уменьшением валентного угла в системах PdL_n /при переходе от линейной структуры к угловой или при переходе от PdL_2 к PdL_3 / оцененная прочность отдельных связей $Pd-PH_3$ понижается. В соответствии с этим наиболее устойчивыми являются структуры с большими валентными углами, что согласуется с экспериментальными данными. Понижение прочности связей $Pd-PH_3$ коррелирует с понижением вклада 5\$-A0 Pd в связывающее взаимодействие при переходе от формальной гибридизации \$p-типа к $$p^2$ -типу.

Найдено, что в модельных биядерных комплексах — линейной структуре $Pd_2(PH_3)_2$ и плоской структуре $Pd_2(PH_3)_4$ непосредственная связь Pd_1-Pd_2 слаба и образуется за счет взаимодействия 55- и 5p-AO одного атома Pd_2 с d_1 -орбиталями другого атома Pd_2 Сопоставление энергетических уровней низших вакантных мо Pd_2 и Pd , которые могут служить критерием координационной ненасыщенности этих комплексов, показывает, что биядерный комплекс обладает большей координационной ненасыщенностью в сравнении с моноядерными комплексами /см. табл. 2/.

На примере модельных систем Pd2 (PPhH2)2 показано, что внутримолекулярная координация ароматических колец фосфиновых лигандов с атомами палладия приводит к понижению координационной ненасыщенности биядерного комплекса, моделирующего выделенное и экспериментально охарактеризованное соединение Pd2 (PPh3)2.

В ІУ-ой главе проведено сравнительное исследование координации молекулярного водорода с комплексами Pd(II) типа транс- ху $Pd(PH_3)_2$ (X,Y = $Cl.OH.OCOCH_3$), транс- $X_2Pd(PH_3)_2$ (H_2O) (X=Cl.OH), комплексами Pd(O) типа $Pd(PH_3)_1$ (n=I-3) и $Pd_2(PH_3)_2$, а также $Pt(PH_3)_2$. Координация молекули H_2 яв-

ляется необходимой начальной стадией ее активации как в механизмах с гомолитическим разрывом связи Н-Н, так и в механизмах с гетеролитическим разрывом этой связи.

Во всех случаях важную роль в координации H_2 играют $5\mathfrak{s}-\mathfrak{u}$ $\mathfrak{sp}-\mathfrak{A0}$ \mathfrak{Pd} , чье взаимодействие с $\mathfrak{I}\mathfrak{s}-\mathfrak{A0}$ \mathfrak{H} определяет донорно-акцепторный перенос электронного заряда $\mathfrak{Pd}\longleftarrow H_2$. В случае комплексов $\mathfrak{Pd}(\overline{\mathfrak{U}})$ результирующий положительный заряд, возникающий вследствии этого на атомах \mathfrak{H} , обусловливает непосредственное взаимодействие координированной молекулы \mathfrak{H}_2 с анионным лигандом, что способствует гетеролитическому разрыву связи $\mathfrak{H}-\mathfrak{H}$.

В таблицах З и 4 приведены значения $\tilde{E}=-E^{3/4}(M_mL_nH_2)+E^{3/4}(M_mL_n)+E^{3/4}(H_2)-E^{3/4}(H_2)-E^{3/4}(M_mL_nH_2)+E^{3/4}(M_mL_n)+E^{3/4}(H_2)$ — величины, коррелирующей с энергией образования комплекса $M_mL_n+H_2$ — $M_mL_n(H_2)$. Электронная энергия $E^{3/1}$ и энергия межостовного отталкивания E^{0CT} в используемой схеме ШДДП вычисляются несбалансированным образом, поэтому имеют смысл лишь относительные величины \tilde{E} в рядах изоструктурных комплексов. В случае комплексов Pd(O) типа $PdL_n(H_2)$ и $Pd_2L_2(H_2)$ /см. рис. I/ найдено, что величина \tilde{E} понижается с ростом координационного числа N /см. табл. 3/. Это понижение определяется, в основном, понижением прочности связей $Pd-PH_3$ и полученная закономерность должна быть справедливой и в общем случае присоединения нового лиганда к фосфиновому комплексу.

Данные расчетов подтверждают сделанные в ряде теоретических и экспериментальных работ на основе качественного анализа предположения об электронных факторах, обусловливающих понижение прочности координационных связей с ростом И. Таким электронным фактором, как показал анализ орбитальных

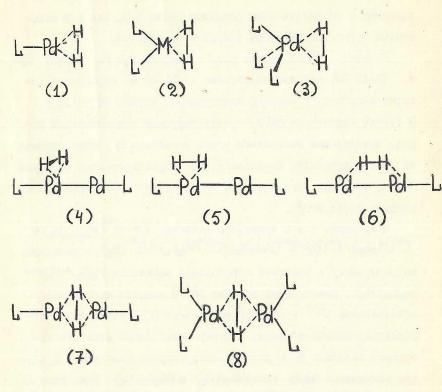


Рис.І. Структуры, моделирующие координацию H_2 с фосфиновыми комплексами Pd(0).

Суммарние заселенности (Q) d-, \$-, p-AO M, эффективные заряды атомов(Z) и индексн овязей структур I-8 (см. рис. I)* Таблица 3.

Appropriate the second	delana del constitución de la co	-	-					The state of the s	-
Номер	Н	C2	C3	က	4	S.	9	7	8
структуры		(M=Pd)	(M=Pt)						
Qg (Pd)	0,34	0,32	OI'I	0,29	(0,20)	0,32 I,IO 0,29 (0,20) (0,2I) 0,26	0,26	0,3I	0,30
					0,22	0,22 0,22			
(pd) db	0,16	0,34	0,34 0,55	0,52	(0,12)	0,52 (0,12) (0,12) 0,17	0,17	0,18 0,36	98,0
•					0,20	0,20 0,2I			
Q4(Pd) 9,78	9,78	9,72	9,72 8,81		(68,89)	I8'6 (68'6) (68'6) 99'6	18°6	9,78 9,77	9,77
					9,78	9,76			
H M	0,28	-0,38	-0,46	-0,47	(-0,2I)	-0,38 -0,46 -0,47 (-0,21) (-0,22) -0,24 -0,27 -0,43	-0,24	-0,27	-0,43
			THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAM		-0,20	6I'0-			
7H	0,05	0,04	0,04	0,04	0,04 0,04 0,04 0,07 (0,02)	(0,03)	0,07	80,0 60,0 70,0	80,0
						0,05			
SE** 38	-7,05	-7,30	-7,30 -7,15 -6,84		06,9-	-6,87	99*6-	-I3,52	-9,66 -I3,52 -I3,92
E, 38	2,92	2,54	2,05	2,08	2,54 2,05 2,08 3,10 2,95	2,95	4,03	4,03 5,9I 5,63	5,63

*В скосках-данные для Рф, непосредственно не связанного сН₂, и для атома Н (стр.5), ближайшего к L. **Сумма Емн для всех непосредственно связанных пар МН вкладов в индексы связей, является энергетическая невыгодность необходимого для образования связей промотирования электронного заряда $4d \rightarrow 5p$ при переходе от формальной гибридизации p-типа к p^3 -типу.

В случае биядерных комплексов Pd(0) моделировались как одноточечная, так и двухточечная координация H_2 /см. рис. I/. Наибольшей относительной устойчивостью обладает структура с симметричной мостиковой координацией H_2 /см. табл. 3/, что обусловлено аддитивностью /по отношению к числу атомов металла/ взаимодействия комплексов палладия с H_2 . В биядерных структурах с одноточечной координацией H_2 величина \tilde{E} почти не отличается от соответствующей величини для моноядерных комплексов. Полученные результаты качественно согласуются с установленной экспериментально большей способностью биядерных комплексов к взаимодействию с H_2 в сравнении с моноядерными комплексами.

В У-ой главе изучени факторы, способствующие диссоциации H_2 при взаимодействии с комплексами $Pd(\Pi)$, Pd(0), Pt(0). Проведен расчет структур транс— $XYPd(PH_3)_2(H_2)$ и транс— $X_2Pd(PH_3)_2(H_20)$... (H_2) /см. рис. 2/, моделирующих смещение H_2 в сторону анионного лиганда на расстояние типичной водородной связи H-X на начальной стадии реакции H_2 с комплексами $Pd(\Pi)$. Рассчитаны также дигидридные структуры $H_2Pd(PH_3)_2$, $H_2Pt(PH_3)_2$, $H_2Pd_2(PH_3)_2$, моделирующие диссоциативное присоединение H_2 к фосфиновым комплексам Pd(0) и Pt(0) /см. рис. 3/.

Показано, что при координации молекулярного водорода комплексами $Pd(\mathbb{I})$ возможно заметное непосредственное взаимодействие H_2 с кислородсодержащими лигандами, которое со-

Рис.2. Структуры, моделирующие взаимодействие H_2 с анионным лигандом X в координационной сфере комплексов $Pd(\underline{\overline{u}})$.

Рис.З. Структуры, моделирующие диссоциативное присоединение Н₂ к фосфиновым комплексам Рd(0) и Рt(0).

провождается значительной поляризацией координированной молекули H_2 . Сопоставление полученных двухцентровых компонент
полной энергии и величин \widetilde{E} /см. табл. 4/, рассматриваемых
как индекси реакционной способности, показывает, что гетеролитический разрыв связи H-H должен быть облегчен в случае
комплексов с кислородсодержащими лигандами по сравнению с
хлоридными комплексами. Это согласуется с большим сродством
лиганда OR по отношению к атому H, несущему положительный
заряд.

Сопоставление результатов расчета структур XYPd(PH₃)₂(H₂) с одинаковыми лигандами X и различными лигандами Y, а также модельных структур X₂Pd(PH₃)₂(H₂0)(H₂), содержащих молекулу растворителя в координационной сфере комплекса, показало, что энергетика взаимодействия комплексов Pd(I) сH₂ определяется, по крайней мере на начальной стадии, природой атомов, непосредственно участвующих в четырехцентровом взаимодействии Pd... X. Полученные результаты подтверждают выскаванные на основе анализа экспериментальных данных предположения о роли ацидолигандов в реакции H₂ с комплексами Pd(II).

Найдено, что во всех дигидридных структурах, описывающих диссоциативное присоединение H_2 к комплексам Pd(0) и Pt(0) гидридные атомы водорода несут отрицательный заряд, причем образование гидридных связей Pd-H сопровождается промотированием значительного электронного заряда с валентных d- на внешние s- и p-AC. В таблице 5 приведены относительные энергии дигидридных структур ΔE в сравнении с комплексами с H_2 в недиссоциированной форме. При этом /для уменьшения возможной ошибки, связанной с используемым полуэмпирическим методом/ сравнивались энергии таких структур, у которых чи-

Эффективные заряды атомов (2) и индексы связей комплексов хуРd(РH3)2...(H2) (см. рис. 2).

Комплекс	(OH)2Pd	(PH3)2 ((Hg)	(OAC)2	Pd(PH3)	(2H) (2 EHG) PA 200 (2H) (4H) (2HG) (2HO) (2H) (2HG) PA (2HO)	Cla Pd	(PH3)2.	(H ₂)
MCT DYKTY DE	I	II	III	Ι	II	III	I	II	III
7 Fp.4	09,0	19°0	0,63	0,6I 0,63 0,67	89,0	17.0	0,46 0,47	0,47	0,47
th,	-0,95	-0,97	96,0-	-0,98 -0,82	-0,83	-0,84	-0,55	-0,56	-0,56
< *\!	0,05	-0,002 -0,18 0,045	9I.0-	0,045	-0,02	-0°I7	0,043	-0,03	-0,04
H 12	0,05	0,12	0,24	0,12 0,24 0,045	0,10	0,22	0,043	0,11	0,12
EHX, 38	-0,72	8.0	-3,45	-0,80 -3,45 -0,63	0.70	-3,16	-0,55	-0,6I	06,0
E,38	I,65	1,67	1,98	I,67 I,98 I,58	I,59	16°1	I,60	I,59	I,65

* Н - Слижайший к Ро втом водорода.

Суммарные заселенности (Q) d-, ξ -, p-A0 M, эффективные заряды (Ξ) атомов и индексы связей структур I-5 /см. рис. 3/.

Номер	I	I	2	2	3*	4	5
структуры	(M=Pd)	(M=Pt)	(M=Pd)	(M=Pt))		
Qg(M)	0,49	0,79	0,45	0,75	0,50	0,45	0,37
					/0,I3/		W-0.5-W-2-W-5-1
Qp(M)	0,46	0,67	0,50	0,69	0,32	0,29	0,24
					/0,II/	15	
Qd(M)	8,77	8,34	8,62	8,26	8,75	9,14	9,33
					/9,88/		
ZM	0,27	0,20	0,43	0,30	0,43	0,12	0,06
					/-0,I2/		
ZH	-0,35	-0,34	-0,48	-0,4I	- 0,35	-0,33	-0,24
ZE** 3B	- 17,85	- I9,62	- I8,26	- I9,80	-I7,80	-I7,2I	-20,88
ΔE, ∋B	3,06	0,27	2,95	0,03	3,10	2,87	I,65

^{*}В скобках – данные для несвязанного с атомами H атома Pd. Сумма двухцентровых компонент E_{MH} для всех непосредственно связанных пар MH.

сло непосредственно связанных между собой пар атомов **М** и **Н** одинаково.

Результати расчетов в согласии с экспериментальными данными показывают, что комплекс платины обладает большей способностью к диссоциативному присоединению H_2 , чем комплексы палладия, причем транс-дигидридный комплекс несколько более устойчив, чем цис-дигидридный. Это различие обусловлено большей легкостью d-s и d-p промотирования в случае M=pt.

Переход от моноядерных к биядерным комплексам палладия приводит к повышению относительной устойчивости дигидридных структур, так как для образования многоцентровых гидридных связей Pd-H-Pd той же прочности, что и прочность двухцентровых связей Pd-H в моноядерных комплексах палладия, требуется меньшее суммарное промотирование электронного заряда с 4d- на 55- и 5р-АО Pd. Наибольшей относительной устойчивостью обладает симметричная мостиковая структура, которая часто наблюдается в полиядерных гидридах металлов УІІІ группы. Однако, и в этом случае соответствующий комплекс палладия с На в молекулярной форме более устойчив. На основе сопоставления расчетных и экспериментальных данных сделан вывод о возможности молекулярной координации На при взаимодействии с комплексом Pda (PPh3)2.

В заключительном разделе с помощью двухоро́итальной модели проведен анализ энергетических и геометрических факторов, определяющих взаимодействие диффузных и локализованных оро́италей. Полученные результаты в согласии с результатами анализа оро́итального взаимодействия в рассмотренных палладиевых системах позволяют сделать вывод, что важную роль в косрдинации насыщенных соединений, стабилизации переходных и интермедиатных структур играет взаимодействие с относительно низколежащими и в то же время диффузными внешними $\mathfrak{z}-$ и $\mathfrak{p}-$ орбиталями переходных металлов.

Проведен анализ электронных факторов, способствующих диссоциации H_2 по гетеролитическому и гомолитическому механизмам при взаимодействии с комплексами переходных металлов. Рассмотрен возможный механизм диссоциативного взаимодействия H_2 с кластерными системами.

выводы.

- І. С целью выявления факторов, определяющих реакционную способность комплексов палладия /II/ по отношению к молеку-лярному водороду, получения сведений об электронном строении промежуточно образующихся комплексов и о механизме взаимо-действия молекулярного водорода с фосфиновыми комплексами палладия в процессе формирования кластеров, ответственных за катализ селективного гидрирования непредельных соединений, впервые квантовохимически исследовано электронное строение фосфиновых комплексов Ра(П) и Ра(О) и их взаимодействие с водородом.
- 2. Предложена модифицированная схема параметризации метода полного пренебрежения дифференциальным перекрыванием для расчета электронного строения комплексов переходных металлов, последовательно использующая эмпирические параметры Олеари и качественно правильно передающая относительные энергии атомных валентных состояний.
- 3. На основе анализа рассчитанных для комплексов $Pd(\overline{1})$ типа транс-ХУРd L₂ (X,Y = H, C0,0H, OCOCH₃; L = PH₃) индексов

связей получен ряд статического транс-влияния лигандов ОН≈ ОСОСН3 < СС < Н . Порядок лиганда в ряду коррелирует с величиной заряда на атоме лиганда, связанном с Роб. В соответствии с этим рядом связь Роб-Н наиболее прочна в комплексах транс-(ОК)НРОС , что должно облегчать образование промежуточных гидридных комплексов при взаимодействии Н2 с комплексами РобСО с кислородсодержащими лигандами.

- 4. Показано, что повышение реакционной способности комплексов палладия /II/ типа транс-хүкі ь (X,Y =0H, OCOCH3, CO) по отношению к молекулярному водороду при замене галогенидов на кислородсодержащие лиганды обусловлено тем, что непосредственное взаимодействие X... Н2, приводящее к заметной поляризации H2, больше в случае X = OR. Результаты расчетов подтверждают предложенный на основе экспериментальных данных четырехцентровый механизм гетеролитического разрыва связи H-H в реакции диссоциативного замещения H2+ XYPd L2. HX + HYPd L2.
- 5. В комплексах PdLn с ростом координационного числа и уменьшается оцененная прочность связи палладий-фосфин и способность к координации H₂. Координационная ненасыщенность рассматриваемых комплексов Pd(0) сопоставлена с положением нижних вакантных молекулярных орбиталей, состоящих, в основном, из 55- и 5р-АО Pd.
- 6. Проанализировани электронные фактори, обусловливающие способность фосфиновых комплексов Pd(0) и Pt(0) к диссоциативному присоединению H_2 . Относительная устойчивость дигидридных комплексов $H_2Pd_m L_2$ (m=1,2) повышается при переходе от моноядерных к биядерным комплексам благодаря относительной прочности многоцентровых гидридных связей Pd...H..Pd.

Комплекс PtL_2 обладает большей способностью к диссоциативному присоединению H_2 в сравнении с комплексами палладия, что обусловлено большей легкостью d-s и d-p промотирования в случае M=Pt. Полученные результаты объясняют наблюдаемую экспериментально повышенную способность фосфиновых комплексов Pt(0) к диссоциативному присоединению H_2 в сравнении с комплексами Pd(0).

7. Анализ индексов электронного строения, характеризующих относительную прочность комплексов Роши и Розиз с молекулярным водородом, показывает, что наибольшей устойчивостью обладает комплекс Розиз (Нз), в котором молекулярный водород располагается перпендикулярно и симметрично по отношению к связи Ро-Ров . Полученные результаты расчетов позволяют объяснить обнаруженное экспериментально обратимое поглощение Нз комплексом Роз (РРиз).

Основное содержание диссертации изложено в работах:

- I. Гриценко О.В., Корсунов В.А., Багатурьянц А.А., Моисеев И.И., Калечиц И.В., Казанский В.Б. Квантовохимическое исследование реакций, катализируемых комплексами металлов. I. Электронное строение транс-ХНРД(РН3)2 и транс-ХУРД(РН3)2.- Кинетика и катализ, 1979, т.20, вып.5, с.1146-1151.
- 2. Гриценко О.В., Багатурьянц А.А., Моисеев И.И., Казанский В.Б., Калечиц И.В. Квантовохимическое исследование реакций, катализируемых комплексами металлов. II. Активация молекулярного водорода комплексами Ра(II) с кислородсодержащими лиргандами.— Кинетика и катализ. I980, т.2I, вып.3, с.632—638.
 3. Гриценко О.В., Багатурьянц А.А., Моисеев И.И., Казанский
- 3. Гриценко О.В., Багатурьянц А.А., Моисеев И.И., Казанский В.Б., Калечиц И.В. Квантовохимическое исследование реакций,

- катализируемых комплексами металлов. III. Электронное строение фосфиновых комплексов Pd (PH₃)_n и их взаимодействие с молекулярным водородом.— Кинетика и катализ,1981, т.22,вып.2, с.354—358.
- 4. Гриценко С.В., Багатурьянц А.А., Моисеев И.И., Калечиц И.В. Квантовохимическое исследование реакций, катализируемых комплексами металлов. IУ. Взаимодействие фосфиновых комплексов Раци, Развидент и Развидент в развидент и катализ, 1981, т. 22, вып.6, с.1431—1437.
- 5. Гриценко 0.В., Багатурьянц А.А., Жидомиров Г.М. Новая локальная аппроксимация хартри-фоковского обменного потенциала.— Журнал структурной химии, 1980, т.21, №3, с.22-27.
- 6. Багатурьянц А.А., Гриценко О.В., Жидомиров Г.М. О взаимодействии диффузных и локализованных орбиталей.— Журнал физической химии, 1980, т.54, вып.12, с.2993—3000.
- 7. Гриценко О.В., Багатурьянц А.А., Моисеев И.И. Исследование методом ШДШ механизма каталитического гидрирования на комплексах Рд(1). Тезисы докладов УІІ Всесоюзного совещания по квантовой химии. Новосибирск, 1978, с.76.
- 8. Гриценко О.В., Багатурьянц А.А., Моисеев И.И. Квантовохимическое исследование образования гидридных комплексов палладия при взаимодействии водорода с комплексами палладия
 /II/.— Тезисы докладов III Всесоюзного совещания "Синтез и
 физико-химические свойства гидридов переходных металлов".
 Москва,1978, с.83.
- 9. Гриценко 0.В., Багатурьянц А.А. Электронное строение комплексов Pd(O) и их взаимодействие с водородом.— Тезисы докладов Конференции по теории атомов и молекул. Вильнюс, 1979, с.80.

- 10. Гриценко О.В., Багатурьянц А.А., Моисеев И.И., Казанский В.Б., Калечиц И.В. Квантовохимическое исследование взаимо— действия фосфиновых комплексов нульвалентных Рови РС с молекулярным водородом.— Тезиси докладов УІІ Всесовзного совещания "Физические и математические методи в координационной химии". Кишинев, 1980, с.148.
- II. Гриценко О.В., Багатурьянц А.А., Жидомиров Г.М. Приближенный неэмпирический метод МО ССП, основанный на последовательном применении одноцентрового разложения для эффективной аппроксимации молекулярного потенциала.— Тезисы докладов УІІ Всесоюзного совещания "Физические и математические методы в координационной химии". Кишинев, 1980, с.108.